Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 14(1): 7388, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548829

RESUMO

Intrahospital transfer (IHT), a routine in the management of neurocritical patients requiring imaging or interventions, might affect brain metabolism. Studies about IHT effects using microdialysis (MD) have produced conflicting results. In these studies, only the most damaged hemisphere was monitored, and those may not reflect the impact of IHT on overall brain metabolism, nor do they address differences between the hemispheres. Herein we aimed to quantify the effect of IHT on brain metabolism by monitoring both hemispheres with bilateral MD. In this study, 27 patients with severe brain injury (10 traumatic brain injury and 17 subarachnoid hemorrhage patients) were included, with a total of 67 IHT. Glucose, glycerol, pyruvate and lactate were measured by MD in both hemispheres for 10 h pre- and post-IHT. Alterations in metabolite levels after IHT were observed on both hemispheres; although these changes were more marked in hemisphere A (most damaged) than B (less damaged). Our results suggest that brain metabolism is altered after an IHT of neurocritical ill patients particularly but not limited to the damaged hemisphere. Bilateral monitorization may be more sensitive than unilateral monitorization for detecting metabolic disturbances not directly related to the course of the disease.


Assuntos
Hemorragia Subaracnóidea , Humanos , Microdiálise/métodos , Hemorragia Subaracnóidea/terapia , Hemorragia Subaracnóidea/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Encéfalo/metabolismo
2.
Neurocirugia (Astur : Engl Ed) ; 35(3): 136-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38159810

RESUMO

BACKGROUND: In spontaneous subarachnoid haemorrhage (SAH) accurate determination of the bleeding source is paramount to guide treatment. Traditionally, the bleeding pattern has been used to predict the aneurysm location. Here, we have tested a software-based tool, which quantifies the volume of intracranial blood and stratifies it according to the regional distribution, to predict the location of the ruptured aneurysm. METHODS: A consecutive series of SAH patients admitted to a single tertiary centre between 2012-2018, within 72 h of onset, harbouring a single intracranial aneurysm. A semi-automatized method of blood quantification, based on the relative density increase, was applied to initial non-contrast CTs. Five regions were used to define the bleeding patterns and to correlate them with aneurysm location: perimesencephalic, interhemispheric, right/left hemisphere and intraventricular. RESULTS: 68 patients were included for analysis. There was a strong association between the distribution of blood and the aneurysm location (p < 0.001). In particular: ACom and interhemispheric fissure (p < 0.001), MCA and ipsilateral hemisphere (p < 0.001), ICA and ipsilateral hemisphere and perimesencephalic cisterns (p < 0.001), PCom and hemispheric, perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p < 0.001). The internal diagnostic value was high (AUROC ≥ 0.900) for these locations. CONCLUSION: Regional automatised volumetry seems a reliable and objective tool to quantify and describe the distribution of blood within the subarachnoid spaces. This tool accurately predicts the location of the ruptured aneurysm; its use may be prospectively considered in the emergency setting when speed and simplicity are attained.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/diagnóstico por imagem , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/complicações , Estudos Retrospectivos , Adulto , Tomografia Computadorizada por Raios X , Software
3.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870961

RESUMO

Despite being in the same pathway, mutations of KRAS and BRAF in colorectal carcinomas (CRCs) determine distinct progression courses. ZEB1 induces an epithelial-to-mesenchymal transition (EMT) and is associated with worse progression in most carcinomas. Using samples from patients with CRC, mouse models of KrasG12D and BrafV600E CRC, and a Zeb1-deficient mouse, we show that ZEB1 had opposite functions in KRAS- and BRAF-mutant CRCs. In KrasG12D CRCs, ZEB1 was correlated with a worse prognosis and a higher number of larger and undifferentiated (mesenchymal or EMT-like) tumors. Surprisingly, in BrafV600E CRC, ZEB1 was associated with better prognosis; fewer, smaller, and more differentiated (reduced EMT) primary tumors; and fewer metastases. ZEB1 was positively correlated in KRAS-mutant CRC cells and negatively in BRAF-mutant CRC cells with gene signatures for EMT, cell proliferation and survival, and ERK signaling. On a mechanistic level, ZEB1 knockdown in KRAS-mutant CRC cells increased apoptosis and reduced clonogenicity and anchorage-independent growth; the reverse occurred in BRAFV600E CRC cells. ZEB1 is associated with better prognosis and reduced EMT signature in patients harboring BRAF CRCs. These data suggest that ZEB1 can function as a tumor suppressor in BRAF-mutant CRCs, highlighting the importance of considering the KRAS/BRAF mutational background of CRCs in therapeutic strategies targeting ZEB1/EMT.


Assuntos
Carcinoma , Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Humanos , Camundongos , Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
Cells ; 12(8)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190034

RESUMO

BACKGROUND: The high recurrence of glioblastoma (GB) that occurs adjacent to the resection cavity within two years of diagnosis urges an improvement of therapies oriented to GB local control. Photodynamic therapy (PDT) has been proposed to cleanse infiltrating tumor cells from parenchyma to ameliorate short long-term progression-free survival. We examined 5-aminolevulinic acid (5-ALA)-mediated PDT effects as therapeutical treatment and determined optimal conditions for PDT efficacy without causing phototoxic injury to the normal brain tissue. METHODS: We used a platform of Glioma Initiation Cells (GICs) infiltrating cerebral organoids with two different glioblastoma cells, GIC7 and PG88. We measured GICs-5-ALA uptake and PDT/5-ALA activity in dose-response curves and the efficacy of the treatment by measuring proliferative activity and apoptosis. RESULTS: 5-ALA (50 and 100 µg/mL) was applied, and the release of protoporphyrin IX (PpIX) fluorescence measures demonstrated that the emission of PpIX increases progressively until its stabilization at 24 h. Moreover, decreased proliferation and increased apoptosis corroborated the effect of 5-ALA/PDT on cancer cells without altering normal cells. CONCLUSIONS: We provide evidence about the effectiveness of PDT to treat high proliferative GB cells in a complex in vitro system, which combines normal and cancer cells and is a useful tool to standardize new strategic therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Fotoquimioterapia , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Técnicas de Cocultura , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Glioma/patologia , Encéfalo/patologia , Organoides
5.
Cancer Immunol Immunother ; 72(4): 827-840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36083313

RESUMO

BACKGROUND: Immune check-point blockade (ICB) has shown clinical benefit in mismatch repair-deficient/microsatellite instability high metastatic colorectal cancer (mCRC) but not in mismatch repair-proficient/microsatellite stable patients. Cancer vaccines with autologous dendritic cells (ADC) could be a complementary therapeutic approach to ICB as this combination has the potential to achieve synergistic effects. METHODS: This was a Phase I/II multicentric study with translational sub-studies, to evaluate the safety, pharmacodynamics and anti-tumor effects of Avelumab plus ADC vaccine in heavily pre-treated MSS mCRC patients. Primary objective was to determine the maximum tolerated dose and the efficacy of the combination. The primary end-point was 40% progression-free survival at 6 months with a 2 Simon Stage. RESULTS: A total of 28 patients were screened and 19 pts were included. Combined therapy was safe and well tolerated. An interim analysis (Simon design first-stage) recommended early termination because only 2/19 (11%) patients were disease free at 6 months. Median PFS was 3.1 months [2.1-5.3 months] and overall survival was 12.2 months [3.2-23.2 months]. Stimulation of immune system was observed in vitro but not clinically. The evaluation of basal RNA-seq noted significant changes between pre and post-therapy liver biopsies related to lipid metabolism and transport, inflammation and oxidative stress pathways. CONCLUSIONS: The combination of Avelumab plus ADC vaccine is safe and well tolerated but exhibited modest clinical activity. Our study describes, for the first-time, a de novo post-therapy metabolic rewiring, that could represent novel immunotherapy-induced tumor vulnerabilities.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Vacinas Anticâncer/uso terapêutico , Reparo de Erro de Pareamento de DNA , Neoplasias do Colo/tratamento farmacológico , Neoplasias Retais/tratamento farmacológico , Células Dendríticas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
6.
Front Oncol ; 12: 1080685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531012

RESUMO

Introduction: Glioblastoma (GBM) remains the most frequent and lethal primary brain tumor in adults, despite advancements in surgical resection techniques and adjuvant chemo- and radiotherapy. The most frequent recurrence pattern (75-90%) occurs in the form of continuous growth from the border of the surgical cavity, thus emphasizing the need for locoregional tumor control. Fluorescence-guided surgical resection using 5-ALA has been widely implemented in surgical protocols for such tumors. Recent literature also highlights the applicability of 5-ALA-mediated photodynamic therapy to obtain locoregional tumor control further. This study aims to identify if 5-ALA mediated photodynamic therapeutic effect after gross total glioblastoma resection has inadvertently occurred due to the exposition of protoporphyrin IX charged peripheral tumoral cells to operative room light sources. Methods: Of 146 patients who were intervened from glioblastoma between 2015 and 2020, 33 were included in the present study. Strict gross total resection (without supralocal resection) had been accomplished, and adjuvant chemoradiotherapy protocol was administered. Two comparison groups were created regarding the location of the recurrence (group A: up to 1 centimeter from the surgical cavity, and group B: beyond 1 centimeter from the surgical cavity). The cutoff point was determined to be 1 centimeter because of the visible light penetrance to the normal brain tissue. Results: In univariate analysis, both groups only differed regarding 5-ALA administration, which was significantly related to a minor relative risk of presenting the recurrence within the first centimeter from the surgical cavity (Relative Risk = 0,655 (95% CI 0,442-0,970), p-value=0,046). Results obtained in univariate analysis were corroborated posteriorly in multivariate analysis (RR=0,730 (95% CI 0,340-0,980), p=0,017). Discussion: In the present study, a probable inadvertent 5-ALA photodynamic therapeutical effect has been detected in vivo. This finding widely opens the door for further research on this promising theragnostic tool.

7.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497403

RESUMO

Next-generation sequencing (NGS) provides a molecular rationale to inform prognostic stratification and to guide personalized treatment in cancer patients. Here, we determined the prognostic and predictive value of actionable mutated genes in metastatic colorectal cancer (mCRC). Among a total of 294 mCRC tumors examined by targeted NGS, 200 of them derived from patients treated with first-line chemotherapy plus/minus monoclonal antibodies were included in prognostic analyses. Discriminative performance was assessed by time-dependent estimates of the area under the curve (AUC). The most recurrently mutated genes were TP53 (64%), KRAS or NRAS (49%), PIK3CA (15%), SMAD4 (14%), BRAF (13%), and FBXW7 (9.5%). Mutations in FBXW7 correlated with worse OS rates (p = 0.036; HR, 2.24) independently of clinical factors. Concurrent mutations in TP53 and FBXW7 were associated with increased risk of death (p = 0.02; HR, 3.31) as well as double-mutated TP53 and SMAD4 (p = 0.03; HR, 2.91). Analysis of the MSK-IMPACT mCRC cohort (N = 1095 patients) confirmed the same prognostic trend for the previously identified mutated genes. Addition of the mutational status of these genes upon clinical factors resulted in a time-dependent AUC of 87%. Gene set enrichment analysis revealed specific molecular pathways associated with SMAD4 and FBXW7 mutations in TP53-defficient tumors. Conclusively, SMAD4 and FBXW7 mutations in TP53-altered tumors were predictive of a negative prognostic outcome in mCRC patients treated with first-line regimens.

8.
Front Cell Neurosci ; 16: 1016814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505512

RESUMO

Introduction: Delayed cerebral ischemia (DCI) is a dreadful complication present in up to 30% of patients with spontaneous subarachnoid hemorrhage (SAH). Indeed, DCI is one of the main causes of long-term disability in SAH, yet its prediction and prevention are troublesome in poor-grade SAH cases. In this prospective study, we explored the potential role of micro ribonucleic acid (microRNA, abbreviated miRNAs)-small non-coding RNAs involved in clue gene regulation at the post-transcriptional level-as biomarkers of neurological outcomes in SAH patients. Methods: We analyzed the expression of several miRNAs present in the cerebrospinal fluid (CSF) of SAH patients during the early stage of the disease (third-day post-hemorrhage). NanoString Technologies were used for the characterization of the CSF samples. Results: We found an overexpression of miRNAs in the acute stage of 57 SAH in comparison with 10 non-SAH controls. Moreover, a differential expression of specific miRNAs was detected according to the severity of clinical onset, but also regarding the development of DCI and the midterm functional outcomes. Conclusion: These observations reinforce the potential utility of miRNAs as prognostic and diagnostic biomarkers in SAH patients. In addition, the identification of specific miRNAs related to SAH evolution might provide insights into their regulatory functions of pathophysiological pathways, such as the TGF-ß inflammatory pathway and blood-brain barrier disruption.

9.
Front Immunol ; 13: 926304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119118

RESUMO

Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/ß-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.


Assuntos
Glutamina , Neoplasias , Carbono , Glucose , Hexosaminas , Humanos , Hipoglicemiantes , Lactatos , Lipídeos , Microambiente Tumoral/genética
10.
Front Neurol ; 13: 977307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172028

RESUMO

Hyperglycaemia, hypoglycaemia and higher glucose variability during the Early Brain Injury (EBI) period of aneurysmal subarachnoid hemorrhage (aSAH) have been associated with poor clinical outcome. However, it is unclear whether these associations are due to direct glucose-driven injury or if hyperglycaemia simply acts as a marker of initial severity. Actually, strict glucose control with intensive insulin therapy has not been demonstrated as an effective strategy for improving clinical outcomes after aSAH. Currently published studies describing an association between hyperglycaemia and prognosis in aSAH patients have been based on isolated glucose measurements and did not incorporate comprehensive dynamic evaluations, such as those derived from subcutaneous continuous glucose monitoring devices (CMG). Arguably, a more accurate knowledge on glycaemic patterns during the acute phase of aSAH could increase our understanding of the relevance of glycaemia as a prognostic factor in this disease as well as to underpin its contribution to secondary focal and diffuse brain injury. Herein, we have summarized the available evidence on the diagnostic and prognostic relevance of glucose metrics during the acute phase of cerebrovascular diseases, focusing in the EBI period after aSAH. Overall, obtaining a more precise scope of acute longitudinal glucose profiles could eventually be useful for improving glucose management protocols in the setting of acute aSAH and to advance toward a more personalized management of aSAH patients during the EBI phase.

11.
Biomedicines ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740307

RESUMO

Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial-tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.

12.
Front Neurol ; 13: 884157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585845

RESUMO

Objective: Spontaneous intracerebral hemorrhage is characterized by high fatality outcomes, even under best medical treatment. Recently, minimally invasive surgical (MIS) evacuation of the hematoma has shown promising results and may soon be implemented in the clinical practice. Hereby, we intended to foresee the logistic requirements for an early hematoma evacuation protocol, as well as to evaluate in a real-life implementation model the cost-utility of the two main MIS techniques for hemorrhagic stroke (catheter evacuation plus thrombolysis and neuroendoscopic aspiration). Methods: Data were obtained from the pool of hemorrhagic-stroke patients admitted to our institution during an annual period (2020-2021) and contrasted to the reported results in published trials of MIS techniques. Potential candidates for surgical treatment were identified according to the inclusion/exclusion criteria established in these trials. Then, a cost-utility analysis was performed, which explored the incremental cost per unit of health gained with a given treatment. The treatment effect was measured by differences in modified Rankin Score, and subsequently converted to quality-adjusted life years (QALY). Results: Of the 137 patients admitted to our center with supratentorial spontaneous intracerebral hemorrhage in a 1-year period, 17 (12.4%) were potential candidates for the catheter evacuation plus thrombolysis technique (Minimally Invasive Surgery with Thrombolysis in Intracerebral Hemorrhage Evacuation trial, MISTIE III criteria) and 59 (43.0%) for the neuroendoscopic aspiration technique (Dutch Intracerebral Hemorrhage Surgery Trial Pilot Study, DIST criteria). The incremental cost-utility ratio was € 76,533.13 per QALY for the catheter-based evacuation and € 60,703.89 per QALY for the endoscopic-based technique. Conclusion: Around 12-43% of patients admitted to hospital with spontaneous hemorrhagic stroke could be potential candidates to MIS early evacuation of the cerebral hematoma. In our real-life implementation model, the cost-utility analysis favored the neuroendoscopic evacuation over the catheter aspiration technique. Further studies are advisable as new data from the ongoing randomized trials becomes available.

13.
J Neurointerv Surg ; 14(12): 1220-1225, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34880076

RESUMO

BACKGROUND: Risk of rupture in arteriovenous malformations (AVMs) varies considerably among series. Hemodynamic factors, especially within the venous side of the circuit, seem to be responsible but are not yet well defined. We analyzed tortuosity in the draining vein as a potential new marker of rupture in AVMs, and propose a simple index to predict AVM bleeding. METHODS: A retrospective analysis of the venous angioarchitecture of brain AVMs was carried out at our center from 2013 to 2021, with special attention to venous tortuosity. After univariate analysis, the features of interest were combined to construct several predictive models using multivariate logistic regression. The best model proposed was the new AVM rupture index (ARI), which was then validated in an independent cohort. RESULTS: 68 AVMs were included in the first step and 32 in the validation cohort. Venous tortuosity, expressed as at least one curve >180°, was a significant predictor of rupture (p=0.023). The proposed bleeding index consisted of: venous tortuosity (any curve of >180°), single draining vein, and paraventricular/infratentorial location. It seems to be a robust evaluation tool, with an area under the receiver operating characteristic (AUROC) curve of 0.806 (95% CI 0.714 to 0.899), consistently replicated in the independent sample (AUROC 0.759 (95% CI 0.607 to 0.911)), and with an inter-rater kappa coefficient of 0.81 . CONCLUSIONS: Venous tortuosity may serve as a predictor of bleeding in AVMs that warrants further investigation. This likely new marker was one of the three elements of the proposed ARI. ARI outperformed the predictive accuracy of previous scores, and remained consistent in an independent cohort.


Assuntos
Malformações Arteriovenosas Intracranianas , Humanos , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Estudos Retrospectivos , Ruptura , Hemodinâmica , Biomarcadores
14.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576098

RESUMO

The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]-, [o-COSAN]-, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]- could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600-2.500 cm-1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]-, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]- translocates GIC cells' membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/patologia , Compostos Organometálicos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Linhagem Celular Tumoral , DNA/análise , Humanos , Cinética , Lipídeos/análise , Análise Multivariada , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Análise de Componente Principal , Proteínas/análise
15.
Cancers (Basel) ; 13(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205341

RESUMO

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients' prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.

16.
Nat Commun ; 12(1): 1503, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686071

RESUMO

Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.


Assuntos
Neoplasias Encefálicas/imunologia , Líquido Cefalorraquidiano/imunologia , Leucócitos , Microambiente Tumoral/imunologia , Adenocarcinoma de Pulmão , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Prognóstico
17.
J Clin Med ; 10(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477258

RESUMO

BACKGROUND: The level of consciousness and cerebral edema are among the indicators that best define the intensity of early brain injury following aneurysmal subarachnoid hemorrhage (aSAH). Although these indicators are usually altered in patients with a poor neurological status, their usefulness for selecting patients at risk of cerebral infarction (CI) is not well established. Furthermore, little is known about the evolution of these indicators during the first week of post-ictal events. Our study focused on describing the association of the longitudinal course of these predictors with CI occurrence in patients with severe aSAH. METHODS: Out of 265 aSAH patients admitted consecutively to the same institution, 80 patients with initial poor neurological status (WFNS 4-5) were retrospectively identified. After excluding 25 patients with early mortality, a total of 47 patients who underwent early CT (<3 days) and late CT (<7 days) acquisitions were included in the study. Early cerebral edema and delayed cerebral edema were calculated using the SEBES score, and the level of consciousness was recorded daily during the first week using the Glasgow Coma Scale (GCS). RESULTS: There was a significant improvement in the SEBES (Early-SEBES median (IQR) = 3 (2-4) versus Delayed-SEBES = 2 (1-3); p = 0.001) and in GCS scores (B = 0.32; 95% CI 0.15-0.49; p = 0.001) during the first week. When comparing the ROC curves of Delayed-SEBES vs Early-SEBES as predictors of CI, no significant differences were found (Early-SEBES Area Under the Curve: 0.65; Delayed-SEBES: 0.62; p = 0.17). Additionally, no differences were observed in the relationship between the improvement in the GCS across the first week and the occurrence of CI (p = 0.536). CONCLUSIONS: Edema and consciousness level improvement did not seem to be associated with the occurrence of CI in a surviving cohort of patients with severe aSAH. Our results suggest that intensive monitoring should not be reduced in patients with a poor neurological status regardless of an improvement in cerebral edema and level of consciousness during the first week after bleeding.

18.
Neuro Oncol ; 22(5): 652-664, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31637425

RESUMO

BACKGROUND: GRP94 is a glucose-regulated protein critical for survival in endoplasmic reticulum stress. Expression of GRP94 is associated with cellular transformation and increased tumorigenicity in breast cancer. Specifically, overexpression of GRP94 predicts brain metastasis (BM) in breast carcinoma patients with either triple negative or ErbB2 positive tumors. The aim of this study was to understand if microenvironmental regulation of GRP94 expression might be a hinge orchestrating BM progression. METHODS: GRP94 ablation was performed in a BM model BR-eGFP-CMV/Luc-V5CA1 (BRV5CA1) of breast cancer. In vitro results were validated in a dataset of 29 metastases in diverse organs from human breast carcinomas and in BM tissue from tumors of different primary origin. BM patient-derived xenografts (PDXs) were used to test sensitivity to the therapeutic approach. RESULTS: BMs that overexpress GRP94 as well as tumor necrosis factor receptor-associated factor 2 are more resistant to glucose deprivation by induction of anti-apoptotic proteins (B-cell lymphoma 2 and inhibitors of apoptosis proteins) and engagement of pro-survival autophagy. GRP94 ablation downregulated autophagy in tumor cells, resulting in increased BM survival in vivo. These results were validated in a metastasis dataset from human patients, suggesting that targeting autophagy might be strategic for BM prevention. Indeed, hydroxychloroquine treatment of preclinical models of BM from PDX exerts preventive inhibition of tumor growth (P < 0.001). CONCLUSIONS: We show that GRP94 is directly implicated in BM establishment by activating pro-survival autophagy. Disruption of this compensatory fueling route might prevent metastatic growth.


Assuntos
Neoplasias Encefálicas , Proteínas de Membrana , Animais , Autofagia , Proteínas de Choque Térmico HSP70 , Humanos , Proteínas de Membrana/genética , Transplante de Neoplasias
19.
Cancers (Basel) ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416205

RESUMO

The current standard-of-care for metastatic colorectal cancer (mCRC) includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, even though the addition of anti-angiogenic agents to backbone chemotherapy provides little benefit for overall survival. Since the approval of anti-angiogenic monoclonal antibodies bevacizumab and aflibercept, for the management of mCRC over a decade ago, extensive efforts have been devoted to discovering predictive factors of the anti-angiogenic response, unsuccessfully. Recent evidence has suggested a potential correlation between angiogenesis and immune phenotypes associated with colorectal cancer. Here, we review evidence of interactions between tumor angiogenesis, the immune microenvironment, and metabolic reprogramming. More specifically, we will highlight such interactions as inferred from our novel immune-metabolic (IM) signature, which groups mCRC into three distinct clusters, namely inflamed-stromal-dependent (IM Cluster 1), inflamed-non stromal-dependent (IM Cluster 2), and non-inflamed or cold (IM Cluster 3), and discuss the merits of the IM classification as a guide to new immune-metabolic combinatorial therapeutic strategies in mCRC.

20.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA